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Abstract

Curved boundary treatments provide a means of improving the computational accuracy of the conventional stair-
shaped approximation used in lattice Boltzmann (LB) simulations. Furthermore, curved boundary treatments can be
extended to the modeling of moving boundary problems simply by adding a momentum term to the bounced distribution
functions at the solid surface. This study commences by investigating three conventional interpolating treatments for
curved boundaries in LB problems, namely the Filippova and Hänel (FH) model [O. Filippova, D. Hänel, Grid refinement
for lattice-BGK models, J. Comput. Phys. 147 (1998) 219–228], Bouzidi’s model [M. Bouzidi, M. Firdaouss, P. Lallemand,
Momentum transfer of a Boltzmann-lattice fluid with boundaries, Phys. Fluids 13(11) (2001) 3452–3459], and Yu’s model
[D. Yu, R. Mei, W. Shyy, A Unified Boundary Treatment in Lattice Boltzmann Method, AIAA 2003-0953, New York,
2003]. Previous investigations have indicated that the interpolations would break the mass conservation at the boundaries,
since the inaccuracy in evaluation of the momentum transfer at boundary leads to a net mass flux. Based on this reason, a
concept of the interpolation-free treatment for modeling the curved and moving boundary conditions is proposed to over-
come the drawback of these interpolation-based curved boundary treatments. In present study, two interpolation-free
models are then proposed, namely on-site interpolation-free (OSIF) and composite interpolation-free (CPIF) models.
These proposed models are initially applied to simulate the flow in the channels containing a stationary square block posi-
tioned at various locations along the longitudinal axis. The simulations results are then compared with those obtained
using the three conventional interpolating treatments. The interpolation-free models are then applied to the case of moving
boundary problems in which a square block and a cylindrical block, respectively, move with a constant speed along a chan-
nel containing stationary flows. To test the Galilean effect of the proposed CPIF model, a Couette flow past the stationary
square/cylinder block with the moving top/bottom walls is simulated. Overall, the numerical results show that the pro-
posed interpolation-free curved treatment models significantly improve the accuracy of the mass flux computation near
the solid surface, and thus enhance the accuracy of the momentum interaction at the moving boundaries.
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1. Introduction

The lattice Boltzmann method (LBM) is a powerful numerical technique for simulating fluid flows and
modeling the physics in fluids [1–4]. The LBM is based on kinetic theory by using the particles distribution
functions and is modeled on uniform Cartesian lattices with diagonal links (directions) in space as a conse-
quence of the discrete velocity sets. In LB simulations, collision and propagation routines are performed to
model the flow phenomena at the mesoscopic scale, and the macroscopic flow properties, such as the flow den-
sity and momentum, can be determined via distribution functions in phase space. The resulting information
then enables the fundamental quantities such as the drag or lift forces to be computed. Overall, the LBM with
single-relaxation Bhatnagar–Gross–Krook (BGK) model provides a convenient and straightforward
approach for solving continuum flow problems described by the Navier–Stokes equations at moderate Rey-
nolds numbers of approximately O(102). In recent years, the LBM has been improved to handle the flows at
higher Reynolds numbers by using the appropriate turbulent LB models with the multi-relaxation time (MRT)
model [5,6].

A major advantage of lattice Boltzmann method is the ease and accuracy with which it enables complicated
boundary geometries to be processed, hence, investigating suitable boundary conditions for LB simulations
has become a highly researched area in many engineering and scientific applications. The bounce-back
(BB) scheme provides a particularly straightforward approach for modeling no-slip conditions on solid sur-
faces in macroscopic flows. In this scheme, the outgoing directions of the distribution function at the boundary
sites are simply specified as the reverse of the incoming directions. In practice, two basic types of BB scheme
exist, namely the ‘‘on-site” [7] scheme and the ‘‘mid-plane” [8] scheme. As implied by their names, the physical
boundary lies exactly at the lattice node in the former scheme, but lies in between the solid and the fluid lattice
nodes in the latter. It is well-known that the on-site BB scheme is simpler, but has only first-order accuracy,
whereas the mid-plane BB scheme provides second-order accuracy in both space and time [9–11].

Curved boundary treatments have been suggested as a means of improving the accuracy of the stair-shaped
approximation conventionally used in LB simulations when the uniform lattice is mapped in space. Several
strategies have been proposed for dealing with complex geometry, curved boundaries in LBM. The first
approach is to use a body-fitted (arbitrary) mesh and to execute the distribution functions throughout the
entire computational domain [12–14]. The second strategy also applies an interpolation-based approach,
but under a uniform Cartesian mesh, to track the position of boundary. Then, the on-site or off-site BB scheme
is executed at the boundary surface depending on the location of the boundary relative to the lattice nodes [15–
21]. The final one is based upon the utilization of the immersed boundary treatments [22,23]. Due to their
characteristics of a superior numerical accuracy, an intuitive approach and an inherent reliability, the inter-
polation type models published in [15–21] are the most commonly employed technique for resolving curved
boundary problems in LB simulations. However, a previous study [20] has indicated that the interpolation
routines used in these schemes to solve the distribution functions near the curved boundary result in a loss
of mass conservation, which reduces the accuracy of the computed momentum transfer at the boundary
and therefore results in a net mass flux. Consequently, the aim of the present study is to develop an interpo-
lation-free treatment for modeling curved boundaries in LB simulations. Having verified the performance of
the proposed scheme in a series of simulations involving a stationary square block within channel flows of
various Reynolds numbers, the curved boundary treatment is then extended to the case of moving curved
boundary problems by adding a momentum term to the bounced distribution functions at the solid surface.

The remainder of this paper is organized as follows. Section 2 briefly reviews the principles of the lattice
Boltzmann method incorporating the single-relaxation Bhatnagar–Gross–Krook (BGK) approximation. Sec-
tion 3 discusses the various interpolation-based curved boundary models presented in [15–21], then a concept
of the interpolation-free is presented to develop two novel interpolation-free models for curved boundary
treatments. The models are then extended by inserting a momentum term into the bounced distribution func-
tions at the solid surface in order to develop schemes capable of modeling the fluid–solid interaction in LB
simulations involving moving and curved boundaries. Section 4 commences by performing a series of numer-
ical simulations in which a stationary square block is positioned at various axial locations within a channel
flow. The results obtained for the flow rate, global density, drag force and lift force by the proposed interpo-
lation-free schemes are compared with those obtained from the Filippova and Hänel [15–18], Bouzidi et al.
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[19,20] and Yu [21] models, respectively. The proposed schemes are then applied to model the flow phenomena
inherent in channel flows involving moving square and cylindrical blocks, respectively. Meanwhile, a Couette
flow past the fixed square/cylinder block with the moving top/bottom walls is simulated to test the Galilean
effect of the proposed model. Finally, Section 5 presents some brief conclusions and provides an indication of
the intended direction of future research.

2. Review of lattice Boltzmann method

The fundamental principle of the lattice Boltzmann model is the use of distribution functions (f) based on
kinetic theory to model the flow filed at the mesoscopic scale. Here, the density distribution function (f) rep-
resents the probability of the particles at site x at time t moving with a velocity ci during the time interval Dt

along each lattice link (i.e. direction) i. The lattice Boltzmann equation (LBE) is an explicit time-marching
finite-difference representation of the continuous Boltzmann equation in phase space and time. The LBE
incorporating the single relaxation Bhatnagar–Gross–Krook (BGK) approximation has the form [24]:
fiðxþ ciDt; t þ DtÞ � fiðx; tÞ ¼ x½f eq
i ðx; tÞ � fiðx; tÞ�; ð1Þ
where x � Dt/s denotes the relaxation factor with limits 0 < x < 2, cs ¼ c=
ffiffiffi
3
p

is the speed of sound, and
c = Dx/Dt. The kinematic viscosity m is given by the relaxation factor:
m ¼ ð2=x� 1ÞDx � c=6: ð2Þ

The local equilibrium distribution is an analog version of the Maxwellian distribution function for incom-

pressible flows, and is expressed as:
f eq
i ðx; tÞ ¼ wiq 1þ ciA � uA

c2
s

þ uAuB

2c2
s

ciAciB

c2
s

� dAB

� �� �
: ð3Þ
In these expressions, the flow properties are defined as:
Flow density : q ¼
X

i

fi; ð4aÞ

Momentum : quA ¼
X

iA

ficiA: ð4bÞ
In the equations above, sub-indices A and B denote the components of the Cartesian coordinates with implied
summation for repeated indices. Furthermore, wi is the weighting which can be determined to achieve isotropy
of the fourth-order tensor of velocities and Galilean invariance [24]. Applying the Chapman–Enskog expan-
sion, the continuity equation and the Navier–Stokes equations can be recovered exactly at the second-order
approximation from the LB Eq. (1) if the density variation is sufficiently small [25].

For the D2Q9 (two-dimensional nine-velocities) model, the weightings in Eq. (3) are assigned as follows:
wi = 4/9 for |ci| = 0 (i.e. static particle), wi = 1/9 for |ci| = 1, and wi = 1/36 for jcij ¼

ffiffiffi
2
p

. The lattice Boltzmann
method applies two essential steps, namely collision and propagation, to reveal the flow phenomena at the
mesoscopic scale. Hence, the corresponding computations of LBM are performed as:
Collision step : ~f iðx; tÞ ¼ fiðx; tÞ þ x½f eq
i ðx; tÞ � fiðx; tÞ�; ð5aÞ

Propagation step : f iðxþ ciDt; t þ DtÞ ¼ ~f iðx; tÞ; ð5bÞ
where ~f i denotes the post-collision state of the distribution function. From Eqs. (5a) and (5b), it is clear that
the collision process is fully local and the propagation of the distribution functions is uniform. As a result, the
lattice BGK scheme is very simple when applied with the unity lattice size (i.e. Dx = Dy = 1), and a relative
time-step of Dt = 1 such that c = Dx/Dt = 1.

3. Boundary treatments at solid curved surfaces

LB simulations generally apply one of the interpolation-based schemes when treating boundaries with com-
plex geometries comprising arbitrary curvatures, namely the Filippova and Hänel (FH) model [15–18] or the
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Bouzidi/Yu [19–21] model. In both cases, interpolation is performed only near the boundary nodes rather than
throughout the entire computational domain based on the uniform mesh defined on Cartesian coordinate.

Fig. 1 presents a schematic illustration of a regular lattice in 1D projection, involving the 2D or 3D body,
and a curved boundary surface (rW). In simulating the curved boundary problems, this boundary surface may
be located off the solid node (rS) or off the middle between solid and fluid nodes (rS and rF). As shown, the
fraction of the link located in the fluid region can be expressed using a parameter q, defined as:
q � jrF � rWj
jrF � rSj

¼ jrF � rWj
Dx

within range 0 < q 6 1 ð6Þ
In Fig. 1, suppose that the particle distribution function moves from rF to rS with velocity ci, and then reverses
from rS to rF with c�i = �ci to simulate the resulting momentum transfer at the curved boundary surface, i.e.
the inherent bounce-back (BB) scheme. Meanwhile, for a moving wall treatment using the BB scheme, a cer-
tain amount of momentum must be added to the bounced distribution function to reflect the fluid–solid inter-
action (i.e. the momentum transfer) at the boundary surfaces. In other words, the distribution function should
be formulated in the form [2] as:
f�iðrSÞ ¼ fiðrSÞ þ 6wi
q
c2
ðc�i � uWÞ; ð7Þ
where q is the fluid density at the wall and the wall travel with a velocity uW. However, for a curved boundary,
the reversed distribution function f�iðrF; t þ DtÞ, after propagation step, should be modified using one of the
curved boundary treatments, since the bounce-back event at the boundary surface (rW) may not be positioned
exactly at a solid node (rS) or at the mid-point positions between the solid and fluid nodes (rS and rF), respec-
tively, i.e. q 6¼ 1 or q 6¼ 1

2
.

The present investigation commences by examining three conventional interpolation-based models for
curved boundary treatment. Two interpolation-free techniques designed to improve the computational accu-
racy of the LB simulation results for flow problems involving a stationary, curved boundary condition are
then formulated. Finally, the proposed interpolation-free models are extended via the addition of a momen-
tum term and applied to the solution of moving, curved boundary condition problems.

3.1. Filippova and Hänel (FH) model for curved boundary treatment

Filippova and Hänel [15] were the first two researchers to present a curved boundary treatment for lattice-
BGK models. Their model (referred to hereinafter as the FH model) enabled curved solid walls to be treated
with second order accuracy, but was somewhat unstable. In an attempt to improve the numerical stability of
the FH model, Mei et al. proposed an improved curved boundary treatment [16] and demonstrated its use in
the simulation of 3D flows involving curved geometries [17,18]. The basic principles of the FH model are
described in the following.

As shown in Fig. 1, the value of f�i(rF, t + Dt) following propagation step, which is equal to ~f �iðrS; tÞ fol-
lowing collision but prior to propagation step at time-level t, should be solved according to the given infor-
mation in the surrounding fluid nodes, e.g. ~f iðrF; tÞ, ~f iðr0F; tÞ, and ~f iðr00F; tÞ, etc. In [16], Mei et al. provided
Wall

FrFr ′
Wr SrFr ′′

xqΔxΔxΔ

ic− ic

Fig. 1. 1D projection of regular lattice and curved boundary.
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the detailed formulation and analysis of the FH model. Applying a process of linear interpolation, the
unknown value of ~f �iðrS; tÞ ¼ f�iðrF; t þ DtÞ can be formulated as:
~f �iðrS; tÞ ¼ ð1� vÞ~f iðrF; tÞ þ v � f �i ðrS; tÞ: ð8aÞ

In which the fictitious equilibrium distribution function f �i has the form:
f �i ðrS; tÞ ¼ wiqðrFÞ 1þ 3

c2
ðci � uSFÞ þ

9

2

ðci � uFÞ2

c4
� 3

2

u2
F

c2

" #
; ð8bÞ
where uF � u(rF, t), v is a weighting factor, and uSF is the fictitious velocity which is to be chosen. Based on
Filippova and Hänel’s work, the FH model considered flows with a ‘‘slow-flow” condition, i.e. L

ct � 1, and the
Taylor series expansion was applied in both space and time near the wall. The value of the weighting factor v
can be obtained once uSF is chosen. In [15], the relevant equations pertaining to FH model can be summarized
as follows:
q <
1

2
: uSF ¼ uF; v ¼ x � ð2q� 1Þ

ð1� xÞ ; ð9aÞ

q P
1

2
: uSF ¼

ðq� 1Þ
q
� uF þ

1

q
uW; v ¼ x � ð2q� 1Þ; ð9bÞ
where the velocity of the moving boundary uW is given.
The flexibility in the construction of the fictitious equilibrium distribution function f �i ðrS; tÞ is the key to

achieving an improved numerical stability and computational accuracy. To improve the numerical stability,
Mei et al. [16–18] suggested using different nodes to obtain ~f �iðrS; tÞ. Accordingly, Eqs. (9a) and (9b) were
modified to the following forms:
q <
1

2
: uSF ¼ uFF; v ¼ x � ð2q� 1Þ

ð1� 2xÞ ; ð10aÞ

q P
1

2
: uSF ¼ 1� 3

2q

� �
� uF þ

3

2q
uW; v ¼ 2x � ð2q� 1Þ

ð2þ xÞ ; ð10bÞ
where uFF � uðr0F; tÞ in Eq. (10a), as shown in Fig. 1.
In applying the FH model to treat curved boundaries in the current LB simulations, Eqs. (10a) and (10b)

are used to obtain the values of uSF and v, and these values are then substituted into Eq. (8b) to get f �i ðrS; tÞ.
Finally, ~f �iðrS; tÞ is solved from Eq. (8a).

3.2. Bouzidi and Yu interpolation-based models for curved boundary treatment

In LB simulations involving wall boundaries, both the momentum transfer experienced by the particles
which encounter the boundary and the corresponding distribution functions are determined by the fluid–solid
interaction. For a rigid wall with no-slip condition, the bounce-back (BB) boundary treatment is the most eas-
ily implemented scheme and is therefore widely used in LBM simulations. Accordingly, Bouzidi et al. in [19]
proposed a method for treating curved boundaries by combining the BB scheme with an interpolation
approach. In a later study, Lallemand and Luo [20] applied the same approach to treat moving boundary
problems, hereinafter namely the Bouzidi’s model.

In LBM, the particle velocity is always specified as unity, i.e. ci � Dx/Dt = 1. When the mid-plane BB
scheme is applied in Bouzidi’s curved boundary model, the interpolation of the distribution function
f�iðrF; t þ DtÞ following the propagation step should be formulated based on different lattice nodes and
time-levels according to which situations of the arbitrary location is in established [20], i.e. q < 1

2
or q P 1

2
.

When linear interpolation is applied, Bouzidi’s model can be formulated as:
~f �iðrS; tÞ ¼ 2q � ~f iðrF; tÞ þ ð1� 2qÞ~f iðr0F; tÞ for q <
1

2
; ð11aÞ

~f �iðrS; tÞ ¼
1

2q
~f iðrF; tÞ þ

ð2q� 1Þ
2q

~f �iðrF; tÞ for q P
1

2
: ð11bÞ
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Alternatively, when quadratic interpolation is applied, the model has the form:
~f �iðrS; tÞ ¼ qð1þ 2qÞ~f iðrF; tÞ þ ð1� 4q2Þ~f iðr0F; tÞ � qð1� 2qÞ~f iðr00F; tÞ for q <
1

2
; ð11cÞ

~f �iðrS; tÞ ¼
1

qð2qþ 1Þ ½
~f iðrF; tÞ � ð1� 4q2Þ~f �iðrF; tÞ þ qð1� 2qÞ~f �iðr0F; tÞ� for q P

1

2
: ð11dÞ
From the equations above, it is clear that Bouzidi’s model with mid-plane BB scheme requires separate
treatments for q < 1

2
and q P 1

2
, respectively. This is not only inconvenient from a computer coding point

of view, but may also cause an abrupt change in the distribution functions (f) when q changes from less
than 1/2 to greater than 1/2. Accordingly, a unified treatment for curved boundaries was proposed by Yu
et al. [21] based on the same concept as that applied by Bouzidi et al. [19]. In the proposed approach
(referred to hereafter as Yu’s model), the on-site BB scheme was applied in place of the mid-plane BB
scheme, thus avoiding the requirement to judge the positions based on the value of q when interpolating
the unknown distribution function. However, the model requires two sequences of interpolations at differ-
ent time-levels. In Yu’s model, the first interpolation sequence is applied to obtain the distribution func-
tion f�i(rW, t + Dt) following propagation, while the second interpolation is performed to obtain the value
of f�i(rF, t + Dt) based on the interpolated value of f�i(rW, t + Dt). From a coding perspective, it is con-
venient to combine the propagation and bounce-back process into one single step. As a result, the value of
f�iðrF; t þ DtÞ ¼ ~f �iðrS; tÞ can be formulated based on the conjunctive results obtained by the two interpo-
lation sequences.

When linear interpolation is applied, Yu’s model can be formulated as:
~f �iðrS; tÞ ¼
1

ð1þ qÞ ½q �
~f iðrF; tÞ þ ð1� qÞ � ~f iðr0F; tÞ þ q � ~f �iðrF; tÞ�: ð12aÞ
Meanwhile, if quadratic interpolation is applied, the model has the form:
~f �iðrS; tÞ ¼
1

ð2þ qÞð1þ qÞ ½qð1þ qÞ � ~f iðrF; tÞ þ 2ð1� q2Þ � ~f iðr0F; tÞ � qð1� qÞ � ~f iðr00F; tÞ

þ 2qð2þ qÞ � ~f �iðrF; tÞ � qð1þ qÞ � ~f �iðr0F; tÞ�: ð12bÞ
Overall, the major features of these two interpolation-based models proposed by Bouzidi and Yu, respec-
tively, can be summarized as follows:

(a) Yu’s model provides a unified scheme for the treatment of curved boundaries and does not require the
judgment of wall position by q for computational purposes.

(b) Bouzidi’s model requires only a single interpolation sequence at different time-level, with the formulation
of the interpolation depending on the evaluated condition of q. However, Yu’s model inevitably involves
two interpolation sequences.

(c) For the case, where q = 1/2, Bouzidi’s model recovers the mid-plane BB scheme using Eqs. (11b) and
(11d). However, in Yu’s model, the on-site BB scheme cannot be satisfied when q = 1, since the second
interpolation sequence performed to obtain f�i(rF, t + Dt) is still required to model the curved boundary
conditions when q = 1.

(d) In Bouzidi’s model, the on-site BB scheme cannot be recovered when q = 1. In other words, only the
mid-plane BB scheme is satisfied when q = 1/2, but the on-site BB scheme is not considered in Bouzidi’s
model.

A major difference between the FH model presented in Section 3.1 and the Bouzidi and Yu interpolation-
based models presented in this section is that the former scheme (i.e. FH model) formulates a fictitious distri-
bution function at the solid nodes and then executes the collision step at these nodes, whereas the latter models
(i.e. Bouzidi and Yu models) solve the unknown values of f�i(rF, t + Dt) at the fluid nodes using an interpo-
lation technique without the collision step.
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3.3. An interpolation-free model for curved boundary treatment

According to the previous investigation by Lallemand and Luo [20], interpolation-based schemes for treat-
ment of curved boundaries destroy mass conservation near the boundary. The resulting errors in the computed
results for the momentum transfer at the boundary leads to a net mass flux. Therefore, this study proposes two
interpolation-free approaches for curved boundary treatment in LB simulations in order to improve the accu-
racy of the computed results.

The proposed approaches are based upon the following principles:

(a) Both mass and momentum conservation should be satisfied, i.e. q ¼
Pb

i¼0f eq
i and qu ¼

Pb
i¼1cif

eq
i . In

other words, the values of the equilibrium distribution functions ðf eq
i Þ near the boundary cannot be

changed by the proposed curved boundary model.
(b) If this curved boundary model in LBM maintains the two essential steps, i.e. the collision and propaga-

tion steps, with the same time interval (i.e. Dt = 1), the kinematic viscosity must be equal for the smaller
lattice size near the curved boundary, e.g. q 6 1.

(c) Since the principle of fiðx; tÞ ¼ f eq
i ðx; tÞ þ f neq

i ðx; tÞ is hold in LBM, where f neq
i is the non-equilibrium part

of the distribution function, based on which the deviatoric stresses are evaluated. Furthermore, the devi-
atoric stresses between different lattice sizes must be continuous, and thus ð1� x

2
Þf neq

i should be equal in
the different lattice sizes by applying the following definition of the deviatoric (non-equilibrium part)
stresses: sAB ¼ ð1� x

2
Þ
Pb

i¼1f neq
i � ðciAciB � 1

2
ci � cidABÞ.

Applying the principles described above, the proposed interpolation-free approaches treat curved bound-
aries using an appropriate local refinement grid technique with a BB scheme at the solid surface. As shown
in Fig. 2, for an instance of the proposed interpolation-free model, the distribution functions directed toward
the curved boundary, i.e. f3, f4, and f7, are treated as the values from ‘‘coarse” grid transferring into the ‘‘fine”

grid in accordance with the value of q � Dx at each link using a 1D grid refinement technique, and a BB scheme
is then applied at the surface of the curved solid. Filippova and Hänel [15] proposed a grid refinement tech-
nique which not only satisfies the principles outlined above, but also requires no interpolation. Therefore,
Filippova and Hänel’s grid refinement technique provides a suitable basis for the interpolation-free curved
boundary treatments proposed in the current study. Note that the Filippova and Hänel’s grid refinement tech-
nique was not applied to handle the curved boundary problems in literature [15] and the stair-shaped grid
approximation was still maintained for the solid boundary nodes. The FH’s curved boundary model presented
in Section 3.1 has no relevance to the Filippova and Hänel’s grid refinement approach. The details of the pro-
posed methods are described in the following paragraphs.

When transferring information between nodes associated with different lattice sizes, it is essential to
rescale the distribution functions at each link (fi) in order to satisfy the principles of mass and momentum
SrSr

Sr
Fr

xq Δ⋅

4f

7f

3f

Fig. 2. Illustration of interpolation-free treatment of curved boundary using local refinement concept.
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conservation, respectively, and to ensure a continuity of the deviatoric stresses across the interface between the
two different grids. In the LBM framework, the kinematic viscosity is defined as m = (2/x � 1)Dx � c/6 for a
given lattice size Dx. In rescaling the distribution functions, the following grid size ratio is defined:
Q0 � DxðfÞ

DxðcÞ
, where superscripts (c) and (f) denote the coarse grid and the fine grid quantities, respectively. To

ensure a consistent viscosity and Reynolds number in the coarse lattice (Dx(c)) and fine lattice (Dx(f)), the
relationship between the two relaxation factors of the two different lattices must conform to:
xðfÞ ¼ 2Q0

Q0 þ 2
xðcÞ
� 1

� � : ð13Þ
The relaxation factor (x) is changed with the grid size and the hydrodynamic variables (e.g. the kinematic
viscosity). Furthermore, the derivatives of the distribution functions must be continuous across the interface
between the two different grids. Consequently, the following relationship is applied between the post-collision
distribution functions ð~f iÞ at adjacent nodes in the coarse and fine lattices:
~f ðfÞi ¼ f eqðcÞ
i þ ð~f ðcÞi � f eqðcÞ

i Þ � Q
0xðcÞð1� xðfÞÞ
xðfÞð1� xðcÞÞ : ð14Þ
In the proposed model, Eqs. (13) and (14) are applied in place of interpolation to treat the curved boundary.
In present study, the FH’s transformation [15] described above is integrated with the on-site BB scheme to

construct the so-called OSIF (on-site interpolation-free) model. In the proposed model, the fluid distribution
function ~f iðrF; tÞ, is already computed in the post-collision step and is then streamed to the surface of the solid
node rW in the propagation step, i.e. the fi(rW, t + Dt). The on-site BB scheme is then applied at the solid
surface, i.e. by setting ~f �iðrW; t þ DtÞ ¼ fiðrW; t þ DtÞ in the following collision step. Finally, the distribution
function is streamed back to the fluid node in the subsequent propagation step to obtain f�i(rF, t + 2D t) at
time-level (t + 2Dt). When applying the on-site BB scheme, it is only necessary to transform the distribution
function from the coarse grid to the fine grid because parameter q is always less than or equal to 1. Therefore,
the OSIF model can be formulated as a unified form as:

For 0 < q 6 1: Q0 � DxðfÞ

DxðcÞ
¼ q, and x(c) = x is given, and thus
xðfÞ ¼ 2Q0

Q0 þ ð 2
xðcÞ
� 1Þ and

~f iðrF; tÞ ¼ f eq
i ðrF; tÞ þ ½~f iðrF; tÞ � f eq

i ðrF; tÞ� �
Q0xðcÞð1� xðfÞÞ
xðfÞð1� xðcÞÞ : ð15Þ
In the OSIF model, the term ~f iðrF; tÞ in left-hand side of Eq. (15) is revised by the transformation
~f ðcÞi ðrF; tÞ ! ~f ðfÞi ðrF; tÞ at the same lattice site rF and the same time-level t. Afterwards, the computed
~f iðrF; tÞ is streamed to the boundary node rW in the following propagation step (i.e. fiðrW; t þ DtÞ ¼
~f iðrF; tÞÞ, and then apply the on-site bounce-back scheme: ~f �iðrW; t þ DtÞ ¼ fiðrW; t þ DtÞ in the collision step.
Finally, the f�iðrF; t þ 2DtÞ ¼ ~f �iðrW; t þ DtÞ is subsequently streamed back to the fluid node rF from the
boundary rW at time-level (t + 2Dt). From the coding perspective, the on-site BB scheme is directly applied
at the solid node rS for convenient, i.e. setting ~f iðrF; tÞ ¼ fiðrW; t þ DtÞ ¼ fiðrS; t þ DtÞ at solid node in propa-
gation step and ~f �iðrW; t þ DtÞ ¼ ~f �iðrS; t þ DtÞ in following bounce-back (collision) step. Furthermore, it is
clearly observed that the on-site BB scheme can be recovered when Q

0
= q = 1 with conditions of

x = x(f) = x(c) and ~f ðfÞi ðrF; tÞ ¼ ~f ðcÞi ðrF; tÞ.
To reduce the deviation in the non-equilibrium parts of distribution function caused by the transfer proce-

dure, this study proposes a second interpolation-free model with a ‘‘composite” bounce-back scheme, desig-
nated as the CPIF (composite interpolation-free) model which applies either the on-site BB scheme or the mid-
plane BB scheme depending on the evaluated conditions of q. Specifically, when q 6 1/2, the mid-plane BB
scheme is applied, whereas if q lies in the range 1/2 < q 6 1, the on-site BB scheme is employed. In other
words, the CPIF model can be formulated as:
xðcÞ ¼ x is given; so xðfÞ ¼ 2Q0

Q0 þ ð 2
xðcÞ
� 1Þ :
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For q 6 1
2
: applying the mid-plane BB scheme, so that Q

0
= 2q and
~f �iðrS; tÞ ¼ f eq
i ðrF; tÞ þ ½~f iðrF; tÞ � f eq

i ðrF; tÞ� �
Q0xðcÞð1� xðfÞÞ
xðfÞð1� xðcÞÞ : ð16aÞ
For q > 1
2
: applying the on-site BB scheme, so that Q

0
= q and
~f iðrF; tÞ ¼ f eq
i ðrF; tÞ þ ½~f iðrF; tÞ � f eq

i ðrF; tÞ� �
Q0xðcÞð1� xðfÞÞ
xðfÞð1� xðcÞÞ : ð16bÞ
It is clear that the CPIF model is not a unified model. However, a benefit of computation is appeared, such
that both the mid-plane and on-site BB schemes can be recovered when q = 1/2 and q = 1, respectively, i.e.
~f �iðrS; tÞ ¼ ~f iðrF; tÞ when q = 1/2, ~f ðfÞi ðrF; tÞ ¼ ~f ðcÞi ðrF; tÞ when q = 1, with conditions of x = x(f) = x(c) both
for q = 1/2 and q = 1. Meanwhile, it should be noted that the on-site BB treatment is applied at solid node
rS when Eq. (16b) is used for q > 1/2, i.e. setting ~f �iðrS; t þ DtÞ ¼ fiðrF; tÞ at solid nodes in following
bounce-back (collision) step.

When the transformation x(c) ? x(f) is applied to ensure the consistent kinematic viscosity in the coarse
grid and the fine grid near the boundary surface. The condition of x(f)

6 x(c) is always established and their
values depend on the grid size ratio, Q

0 � Dx(f)/Dx(c). It is clear that larger difference between the values of x(f)

and x(c) can be obtained when the Q
0
value is small. Under such condition, the computational instability may

be caused. However, both x(f) and x(c) should satisfy the limits 0 < x < 2 in LB simulations, such that the
coarse grid relaxation factor x(c) must be chosen carefully. Furthermore, according to the results reported
in previous studies [2,18,26,27], the over-relaxation factor, i.e. x > 1, provides more accurate and stable results
when using the single-relaxation LBGK model. Based on the reasons and the numerical tests in current work,
the over-relaxation factor with limit 1.5 P x(c) > 2 is recommended both for the OSIF and CPIF models.

3.4. Application of curved boundary treatment to moving boundary problems

To extend the treatments for stationary curved boundaries described in the sections above to the case of
moving boundary problems, it is necessary to add the momentum effect arising from the fluid–solid interaction
at the moving boundary to the bounced distribution function at the solid node (rS). As indicated in Eq. (7), the
momentum effect is given by 6wi

q
c2 ðc�i � uWÞ.

Furthermore, applying an appropriate treatment of the nodes moving out of the non-fluid (solid) region
into the fluid region is also important. However, this treatment to compute the unknown distribution func-
tions is not unique. For example, the equilibrium distribution function at rF can be computed by taking
the moving boundary velocity (uW) and the global average density in the system q0 or local average density,
and then applying the equilibrium distribution functions to obtain the unknown distribution functions. Alter-
natively, the distribution functions in the non-fluid region can be systematically updated by performing col-
lisions as in the fluid region while maintaining the velocity at the same rate as that of the solid object, i.e.
uW. According to Lallemand and Luo [20], both approaches yield similar results.

In the present study, an extrapolation method is utilized to compute the unknown distribution functions.
An assumption is made that the gradients of the distribution functions (i.e. of

oxÞ of the nodes exiting the non-
fluid region and entering the fluid region are equal to those of the distribution functions near the boundary.
Accordingly, the gradients of the unknown distribution functions can be formulated by the second-order
backward difference scheme as follows:
of
ox

				
Boundary

¼ 3f �iðrF; tÞ � 4f �iðr0F; tÞ þ f�iðr00F; tÞ
2Dx

; ð17aÞ
where f�i(rF, t) is the unknown value of the distribution functions of the node rF leaving the non-fluid region
and entering the fluid region. Meanwhile, the gradients of the distribution functions near the boundary are
given by the second-order backward difference scheme as
of
ox

				
near Boundary

¼ 3f �iðr0F; tÞ � 4f �iðr00F; tÞ þ f�iðr00F þ c�iDt; tÞ
2Dx

: ð17bÞ
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Setting of
ox

		
Boundary

¼ of
ox

		
near Boundary

gives
f�iðrF; tÞ ¼
7

3
f�iðr0F; tÞ �

5

3
f�iðr00F; tÞ þ

1

3
f�iðr00F þ c�iDt; tÞ: ð18Þ
Eq. (18) provides an approach for evaluating the unknown distribution functions of the nodes entering the
fluid region of the computational domain from the solid region. By applying the ‘momentum exchange meth-
od’ [8], the drag and lift forces imposed by the fluid on the solid body can then be evaluated via the
formulation:
F A ¼
X

ALL rS

X
iA

ciA½fiAðrS; tÞ þ f�iAðrF; tÞ�; ð19Þ
which is essentially a summary of the momentum flux over all the boundary located between lattice nodes rS

and rF, and orientated normal to ci. An alternative method to estimate the drag and lift forces is the ‘stress
integration method’ [14]. Based on the numerical results in previous studies, both methods for force evaluation
can provide accurate results as long as the characteristic length of boundary is large enough in LB simulations,
e.g. the r > 8 lattices across the cylinder radius for problem of flow past a stationary cylinder [2,18], and x > 15
lattices for an inclined boundary [28], etc. However, the ‘momentum exchange method’ is easy to implement
and provides a superior results to estimate the drag force for problem of flow past a solid obstacle within range
of 10 < Re < 100. Consequently, the ‘momentum exchange method’ is applied for lift/drag forces evaluation in
current work.

4. Simulations

In this study, the validity of the proposed OSIF and CPIF models is verified by performing a series of sim-
ulations in which a stationary square block is positioned at various locations along the length (x-locations) of
a fluid-carrying channel. The results obtained using the present models are then compared with those obtained
from the FH [15–18], Bouzidi [19,20] and Yu [21] models, respectively. Having demonstrated the feasibility of
the proposed models, the CPIF model is then extended to the solution of moving, curved boundary problems
in which a square block and a circular cylinder, respectively, move progressively along the longitudinal axis of
a channel containing a stationary flow. In addition, to test the Galilean invariance of the proposed CPIF
model, a Couette flow past the fixed square/cylinder block with the moving top/bottom walls is simulated.

4.1. Verification of curved boundary models using stationary square block

As shown in Fig. 3, the verification simulations consider a channel flow with a stationary square block posi-
tioned at various locations along the x-axis of the channel. The computational domain is mapped using a
500 � 100 mesh, and the stationary block is assumed to have a side-length of 24. During the simulations,
the central position of the block is shifted from Cx = 200 to 201 in increments of 0.25, while maintaining a
constant height of Cy = 50. Periodic boundary conditions are applied at the channel inlet and outlet for con-
venience. The simulations are performed at three different values of the channel Reynolds number, i.e.
Re = 90, 165 and 325, respectively, where the channel Reynolds number is defined as Re ¼ UmH

m , in which
200 to 201

24
50

500

100

Fig. 3. Configuration of 2D channel flow with stationary square block with center located between Cx = 200 and 201.
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Um is the average x-component velocity (i.e. Ux) at the channel outlet (i.e. x = 500) and H is the height of the
channel. In every case, the simulations are continued until the flow attains a steady state or a stable unsteady
state (e.g. periodic vortex shedding). The simulations are also repeated using the pure mid-plane and on-site
BB schemes in order to quantify the computational accuracies of the various schemes.

The performance of the various curved boundary treatment schemes is evaluated by comparing the results
obtained from each method for the dimensionless flow rate (Q*), the change in global density (q0), the dimen-
sionless drag force (Fx*), and the dimensionless lift force (Fy*), respectively. The channel flow rate is evaluated
as Q ¼

R H
0
ðU xÞdy at the channel outlet (i.e. x = 500). In the present study, a dimensionless flow rate is defined

as Q* � QModel/QMPBB, where QModel is the channel flow rate computed by the particular curved boundary
model and QMPBB is the channel flow rate obtained using the second-order accurate mid-plane BB scheme.
Meanwhile, the change in global density (q0) is defined as the change in the global density throughout the
domain from the initial condition (i.e. at time-step = 0) to the final steady state condition, i.e.
q0 ¼ jqInitial�qSteady j

qInitial
� 100%. Finally, the drag force (Fx) and lift force (Fy) acting on the block are calculated from

Eq. (19), and are both expressed in dimensionless form, i.e. Fx* � (Fx)Model/(Fx)MPBB and Fy* � (Fy)Model/
(Fy)MPBB, respectively. In presenting the results, all four performance evaluation metrics are truncated at val-
ues of less than 10�3 in order to eliminate the data noise caused by rounding errors during the computation
process.

Fig. 4(a1–a3) and (b1–b3) presents the results obtained by the various curved boundary treatment methods
for the variation in the dimensionless flow rate (Q*) and the global density change rate (q0), respectively, with
the varying positions of the block center from Cx = 200 to 201 at Reynolds numbers of Re = 90, 165, and 325,
respectively. It is clear that there is no significant difference of the dimensionless flow rate (Q*) computed by
the mid-plane BB scheme and by the on-site BB scheme, in which the difference of Q* is less than 1.5%. Note
that either the mid-plane or the on-site BB scheme has no change in global density, i.e. q0MPBB ¼ q0OSBB ¼ 0 as
shown in Fig. 4(b1–b3). In general, the results show that steady state solutions are obtained at Re = 90 and
165, respectively. However, at a higher Reynolds number of Re = 325, the flow transits to unsteady state with
periodic vortex shedding behind the stationary block.

Observing the results obtained using the Yu’s and Bouzidi’s interpolation-based models, it can be seen
that: (a) the use of a quadratic interpolation scheme yields no significant improvement in the computational
accuracy compared to that obtained using linear interpolation; (b) there is no appreciable difference in the
numerical results obtained using these two models; (c) for q = 1 or q = 0.5, the interpolation process inev-
itably induces computational errors, i.e. neither the on-site BB scheme nor the mid-plane BB scheme is
recovered; and (d) the error in the flow rate increases as q deviates further from q = 1 and at higher values
of the Reynolds number. In general, Fig. 4(a1–a3) shows that the flow rate results computed using the FH
model are similar to those obtained from Yu’s and Bouzidi’s linear interpolation models. Observing the
results obtained for the global density change rate in Fig. 4(b1–b3), it can be seen that an incorrect mass
flux is produced when the FH, Yu and Bouzidi curved boundary treatment schemes are applied. However,
it is apparent that the incorrect mass flux is significantly reduced when the proposed OSIF and CPIF models
are employed. Furthermore, it can be seen that both interpolation-free models enable the on-site and mid-
plane BB schemes to be recovered exactly when q = 1 or 1/2, respectively. In general, Fig. 4(a1–a3) and (b1–
b3) indicates that both the flow rate error and the global density change rate (q0) error increase at higher
values of the Reynolds number when the FH, Bouzidi and Yu models are employed to treat the curved
boundary. However, the errors produced by the proposed OSIF and CPIF models are significantly less than
those generated by these three interpolation-based schemes. The numerical accuracy of the various curved
boundary treatments is compared in Fig. 5, which shows the x-direction velocity component (Ux) profile
along the centerline of the channel at Re = 165 for the case in which the center of the block is located at
Cx = 200.25. Note that the results computed by the mid-plane BB scheme at Cx = 200.50 and the on-site
BB scheme at Cx = 200 are nearly identical. It is observed that the results obtained using the OSIF and
CPIF models, respectively, are very similar. Furthermore, the incorrect mass flux are also observed at the
positions in front of the block as shown in Fig. 5(b), near the block in Fig. 5(d), and near the channel outlet
in Fig. 5(c) when the interpolation-based models, i.e. the FH and Bouzidi’s linear interpolation models, are
applied. The generated incorrect mass flux may induce the inaccurate fluid–solid momentum interaction
when these interpolation-based models are used.
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Fig. 6(a1–a3) illustrates the variation of the dimensionless drag force (Fx*) with the block center position
for channel flows with Reynolds numbers of 90, 165 and 325, respectively. Fig. 6(b1–b2) presents the variation
of the lift force (Fy) with computing time-steps at a Reynolds number of Re = 325. Note that equivalent
results are not presented for Re = 90 and 165, respectively, since the corresponding lift force is found to be
Fy = 0. In general, Fig. 6(a1–a3) shows that the results computed by the three interpolation-based schemes,
i.e. the FH model, Yu’s and the Bouzidi’s models, for the drag force are broadly similar, and deviate by
Fig. 4. Numerical results obtained by different curved boundary treatments for channel flow with stationary square block: (a1) variation
of dimensionless flow rate (Q*) with block center location for channel Reynolds number of Re = 90 (time-steps = 25,000); (a2) variation of
dimensionless flow rate (Q*) with block center location for channel Reynolds number of Re = 165 (time-steps = 30,000); (a3) variation
of dimensionless flow rate (Q*) with block center location for channel Reynolds number of Re = 325 (time-steps = 60,000); (b1) variation of
global density change rate (q0) with block center location for channel Reynolds number of Re = 90 (time-steps = 25,000); (b2) variation
of global density change rate (q0) with block center location for channel Reynolds number of Re = 165 (time-steps = 30,000); (b3)
variation of global density change rate (q0) with block center location for channel Reynolds number of Re = 325 (time-steps = 60,000).
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Table 1
Reliability analysis of OSIF/CPIF models for Reynolds number of Re = 165 and block center locations of Cx = 200, 200.5, and 201,
respectively

Curved boundary model Q* q0 (%) Fx* Fy*

OSIF model (Cx = 200.01) 0.9949 0.78 1.0598 0
OSIF model (Cx = 200.99) 1.0024 0.06 1.0033 0

CPIF model (Cx = 200.01) 0.9949 0.77 0.9963 0
CPIF model (Cx = 200.49) 1.0019 0.02 1.0004 0
CPIF model (Cx = 200.51) 0.9982 0.40 1.0307 0
CPIF model (Cx = 200.99) 1.0024 0.06 0.9996 0
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no more than 3% from the values computed using the mid-plane BB scheme. However, as exhibited in
Fig. 6(b1–b2), the significant phases difference for the lift force (Fy) against the computing time-steps are
observed when using the three interpolation-based models (FH, Bouzidi’s, and Yu’s models) due to the incor-
rect mass flux generated near the curved boundary. In addition, it is apparent that the OSIF model fails to
improve the accuracy of the computed results for the drag and lift forces. However, the CPIF model substan-
tially improves the accuracy of the mass flux calculation at the fluid–solid boundary, and therefore enhances
the precision of the computed momentum interaction. Interestingly, mass flux errors are still generated in the
current simulations even though the square block is stationary in the channel because the number of solid
nodes dose not maintain constant as the center of the block is shifted incrementally from Cx = 200 to
Cx = 201. The incorrect mass flux by the interpolation-based schemes may lead to an inaccuracy in the com-
puted value of the momentum input at the solid surface.

The reliability of the results obtained using the proposed OSIF and CPIF models can be evaluated by vary-
ing the location of the block center near the values of Cx = 201, 200, and 200.50, which denote the on-site and
mid-plane BB schemes can be recovered, respectively, by using these positions, and thus the values are spec-
ified by Cx = 200.01, 200.49, 200.51, and 200.99. The corresponding results obtained for a Reynolds number
of Re = 165 are presented in Table 1. It is clear that the numerical errors associated with the different block
locations remain approximately stable. In other words, the proposed interpolation-free models yield results
with a similar order of numerical error even when the values of q are close to 1, 0 or 1/2. Thus, it is confirmed
that both the OSIF and the CPIF models provide a stable and reliable mechanism for simulating curved
boundary problems by LBM.

4.2. Application of curved boundary treatment models to moving boundary problems

In this section, the curved boundary treatments discussed above are extended to the simulation of moving
boundary problems by adding the momentum effect described in Eq. (7) of Section 3 to the corresponding
boundary model. The results presented in Section 4.1 have shown that the Bouzidi’s and Yu’s models have
a very similar level of performance. Furthermore, it has been shown that the CPIF model provides more accu-
rate results for the drag and lift forces acting on the block than the OSIF model. As a result, the moving
curved boundary simulations discussed in this section of the paper are performed using the FH model, Bouz-
idi’s linear interpolation model and the proposed CPIF model, respectively. The simulations commence by
considering a square block moving at a constant velocity uWx along the longitudinal axis (i.e. x-direction)
of a 2D channel containing a stationary flow, and then consider the case of a circular cylinder moving along
the same channel. To analyze the computational accuracy and test the Galilean invariance, the simulating
Fig. 6. Numerical results obtained by different curved boundary treatments for channel flow with stationary square block: (a1) variation
of dimensionless drag force (Fx*) with block center location for channel Reynolds number of Re = 90 (time-steps = 25,000); (a2) variation
of dimensionless drag force (Fx*) with block center location for channel Reynolds number of Re = 165 (time-steps = 30,000); (a3)
variation of dimensionless drag force (Fx*) with block center location for channel Reynolds number of Re = 325 (time-steps = 60,000);
(b1) variation of lifting force (Fy) with time-steps computed by Yu’s and Bouzidi’s interpolation-based models for channel Reynolds
number of Re = 325; (b2) variation of lifting force (Fy) with time-steps computed by FH model, and by the proposed OSIF/CPIF
interpolation-free models for channel Reynolds number of Re = 325.
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results in the cases of square/cylinder blocks traveling along the channel are then compared to the case of the
Couette flow past the stationary square/cylinder blocks with identical sliding top/bottom walls velocity uWx

using the mid-plane BB scheme and the CPIF model, respectively.
In the initial simulations, it is assumed that the square block moves along the channel at a velocity corre-

sponding to a block Reynolds number ðRe � L�uWx
m Þ of either 10 or 40, respectively. The block is assumed to

have a side-length of L = 24, the kinematic viscosity is determined by a relaxation factor of x = 1.6, and
the block velocity uWx is determined inversely from the specified block Reynolds number. In addition, the
computational domain is mapped using a 1500 � 100 mesh and an assumption is made that the block center
remains at Cy = 50 as it travels along the x-direction. The simulations of the Couette flow past the stationary
square block with identical moving top/bottom walls velocity uWx are then performed using the mid-plane BB
scheme and CPIF model, respectively. The respective performances of the three curved boundary treatment
schemes in the case of block traveling along the channel are evaluated by reference to the results of Couette
flow obtained using a pure mid-plane BB scheme with no curved boundary treatment and CPIF model with
the interpolation-free curved boundary treatment applied to the stationary square block, respectively.

Fig. 7 illustrates the variation of the calculated drag force Fx over time for the cases where the square block
travels with a velocity and the Couette flow with the identical sliding velocity corresponding to Re = 10. A
momentum fluctuation effect is observed in all of the results for the moving block case, but particularly in
those computed using Bouzidi’s linear interpolation model. However, the average values of Fx computed
using the different models are broadly similar and agree with the reference value obtained by the mid-plane
BB scheme and CPIF model in Couette flow case. The origins of the momentum fluctuation are well docu-
mented in [20], and hence are not discussed here. Fig. 8(a1) and (a2) presents the simulation results obtained
by the various schemes for the drag force and the lift force, respectively, at a higher Reynolds number of
Re = 40. It can be observed that, in the case of the Couette flow, the results of the drag/lift forces estimated
by mid-plane BB scheme agree well with those evaluated by CPIF model as shown in Figs. 7 and 8(a1–a2),
since the simple geometry of the square block induce less influence of the curved boundary treatment in com-
putation. Fig. 8(a1) shows that the FH model, the Bouzidi linear interpolation model, and the proposed CPIF
model all yield similar results in the case of block traveling along the channel for the drag force variation over
time. The results for the lift force Fy presented in Fig. 8(a2) shows that the use of an interpolation technique to
treat the curved boundary in the moving block case induces the error fluid–solid interaction of momentum
input at the solid–fluid interface. Fig. 8(b1) plots the vorticity contours computed by the four schemes in dif-
ferent flow cases (i.e. the block traveling along the channel and the Couette flow) after 20,000 time-steps. It can
be seen that the results obtained using the FH model and the CPIF model in the moving block case are in good
agreement. Furthermore, it is noted that the vorticity intensities computed by these two models are slightly
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Fig. 7. Variation of drag force Fx over time for square block moving within channel with block Reynolds number of Re = 10.
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Fig. 8. Results obtained by various curved boundary schemes for square block moving within channel with block Reynolds number of
Re = 40: (a1) variation of drag force Fx over time; (a2) variation of lift force Fy over time; (b1) vorticity contours at constant intensity
level at time-step = 20,000; (b2) Galilean effect of the proposed CPIF model.
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higher than those obtained from the pure mid-plane BB scheme with no curved boundary treatment in Cou-
ette flow with the stationary block at the corresponding Reynolds number. However, Bouzidi’s linear interpo-
lation-based model predicts the formation of a vortex shedding phenomenon characterized by asymmetric
vorticity contours behind the moving block. This result suggests that the use of an interpolation-based curved
boundary model induces an excessive perturbation of the flow field since interpolation breaks the mass con-
servation at the solid surface and therefore induces an error in the evaluated value of the momentum interac-
tion. Furthermore, Fig. 8(b2) shows the vorticity contours computed by the CPIF model in the case of block
traveling along the channel, and the vorticity contours solved by the mid-plane BB scheme and CPIF model,
respectively, in the Couette flow problem. It is clear that the vorticity intensities in the Couette flow computed
by BB and CPIF models are in good agreement but slightly lower than the results in the moving block case
obtained using CPIF model. In the case of the block moving along the channel, a computational error can be
produced when the extrapolations are applied to treat the nodes entering the fluid region from the solid region.
However, applying the CPIF model for both moving block flow and the Couette flow, the differences of the
results in the average drag/lift forces values and the vorticity contours between these two flow cases are no
more than 5%. The Galilean invariance is therefore demonstrated.
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Finally, the simulations consider the case of a circular cylinder traveling along the channel at a velocity cor-
responding to a cylinder Reynolds number of Re � D�uWx

m ¼ 40. In performing the simulations, the cylinder is
assumed to have a diameter of D = 25 and the relaxation factor is specified as x = 1.6, and the cylinder veloc-
ity uWx is determined inversely from the specified cylinder Reynolds number. Furthermore, the Couette flow
past the stationary cylinder with identical moving top/bottom walls velocity uWx for the corresponding
Re = 40 is also simulated by the mid-plane BB scheme and CPIF model, respectively.

Fig. 9(a1) and (a2) presents the corresponding simulation results for the drag force and the lift force, respec-
tively. As in the case of the square block traveling along the channel, it is apparent in Fig. 9(a1) that the results
obtained for the drag force using Bouzidi’s linear interpolation model, the FH model, and the proposed CPIF
model, respectively, are very similar for the case of the cylinder moving along the channel. It can also be seen
that, in the Couette flow past the stationary cylinder, the results of drag force using a pure mid-plane BB
scheme with no curved boundary treatment have near 6% departures from the drag force results obtained
by the proposed CPIF model with curved boundary treatment, since a curved boundary treatment is necessary
when simulating the flow past a circular cylinder. However, the lift force is found to be Fy = 0 both using the
mid-plane BB scheme and the CPIF model in the Couette flow as shown in Fig. 8(a2). Therefore, it can be
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Fig. 9. Results obtained by various curved boundary schemes for circular cylinder moving within channel with cylinder Reynolds number
of Re = 40: (a1) variation of drag force Fx over time; (a2) variation of lift force Fy over time; (b1) vorticity contours at constant intensity
level at time-step = 21,000; (b2) Galilean effect of the proposed CPIF model.
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inferred that a curved boundary treatment strategy yields a significant improvement in the computational
accuracy compared to that obtained from the conventional stair-shaped curved approximation. However,
the results for the lift force presented in Fig. 9(a2) shows that the use of an interpolation-based technique
(e.g. Bouzidi’s linear interpolation model) produces an error in the computed momentum input at the solid
boundary. Finally, Fig. 9(b1) reveals that the pure mid-plane BB scheme, the FH model, and the CPIF model
generate very similar results for the vorticity contours in the Couette flow and in the case of the cylinder moves
along the channel, respectively. However, Bouzidi’s model again predicts the formation of a vortex shedding
effect behind the moving cylinder. As in the case of the moving square block, it is thought that this vortex
shedding phenomenon can be attributed to an excessive perturbation of the momentum interaction as a result
of the interpolation process. A small difference of the vorticity intensities obtained by the mid-plane BB
scheme without curved boundary treatment and by the CPIF model with interpolation-free curved treatment
in the Couette flow problem can be observed as shown in Fig. 9(b2). However, both the average drag/lift
forces values and the vorticity contours solved by CPIF model in these two different flow cases, i.e. the moving
cylinder case and the Couette flow past a stationary cylinder, exhibit the deviations less than 4% to demon-
strate the Galilean invariance of the proposed CPIF model in present investigation.

5. Conclusion

This study has investigated the application of various curved boundary treatment schemes to the simulation
of stationary and moving curved boundary problems. In addition, two interpolation-free schemes have been
proposed based upon the FH local refinement treatment for grid transformation and two types of BB scheme,
namely the on-site BB scheme (OSIF) and a composite (i.e. both on-site and mid-plane) BB scheme (CPIF).
The resulting treatment procedure is independent of the collision step in LBM. The various curved boundary
models have been applied in a series of simulations of 2D channel flow involving stationary or moving square
blocks and a moving cylinder, respectively. In addition, a Couette flow past the stationary square/cylinder
blocks with the moving top/bottom walls is simulated to test the Galilean invariance of the CPIF model. Over-
all, the numerical results have shown that the proposed interpolation-free schemes, i.e. the OSIF and CPIF
models, reduce the mass flux error near the solid surface, and therefore yield a significant improvement in
the computed value of the momentum input. Consequently, both models provide a suitable strategy for LB
simulations of curved boundary applications. However, when the simulated system involves a moving curved
boundary, the results have shown that the CPIF model provides more accurate results. The Galilean invari-
ance is also demonstrated for the proposed CPIF model.

The current simulations have revealed the presence of spatial fluctuations in both the drag force and the lift
force. The principal causes of this momentum fluctuation effect are discussed in [20], which indicated that two
main sources of error exist. One is that the number of solid nodes changes as the square block or cylinder
moves along the channel, and this has a direct impact on the computed value of the momentum transfer near
the boundary surface. Furthermore, the treatment of the nodes entering the fluid region from the solid region
of the computational domain is not unique, and the used extrapolations of treatment would cause the numer-
ical errors somehow. Finally, it should be noted that even though the OSIF and CPIF models proposed in this
study are intended to eliminate errors in the mass flux and momentum input, a minor mass non-conservation
effect still inevitably exists because the modification of the unknown distribution functions near the curved
boundary is required based upon a grid transformation technique. However, modification of the distribution
function is confined to the non-equilibrium part (i.e. f neq

i Þ only. This part is far smaller than the equilibrium
part, i.e. f neq

i � f eq
i , and therefore the effect of mass non-conservation is significantly reduced, with the result

that the accuracy of the computed momentum interaction near the boundary is considerably improved.
The present study has developed simple interpolation-free models to overcome the drawbacks of conven-

tional interpolation-based curved boundary treatments. The present results suggest that the application of
interpolation techniques to compute the unknown distribution functions in LB simulations is not recom-
mended. The distribution function is defined as the probability of particles number in phase-space with the
specific momentum. The macroscopic flow properties, e.g. the flow density and momentum, are computed
from the distribution functions in accordance with Eqs. (4a) and (4b). When interpolation is applied to
solve the unknown distribution functions in LB simulations, e.g. as in Bouzidi’s and Yu’s models, both the
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equilibrium and the non-equilibrium parts of the distribution functions are evaluated using an interpolation
technique, which results in significant deviations of the macroscopic flow properties if the lattice (grid) size is
not sufficiently small. In the FH model, the numerical accuracy of the simulation results may not be enhanced
effectively by employing an additional collision step to solve the unknown distribution functions. However, the
OSIF and CPIF models proposed in this study avoid the need for interpolation by modifying the non-equi-
librium part of the unknown distribution functions in accordance with the principles of mass and momentum
conservation and the need to ensure continuity of the deviatoric stress near the boundaries, respectively. The
simulation results have confirmed that this approach effectively suppresses the problem of mass non-conser-
vation at the solid–fluid interface and therefore improve the accuracy of the computational results
considerably.
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[9] I. Ginzbourg, D. d’Humiéres, Local second-order boundary method for lattice Boltzmann models, J. Stat. Phys. 84 (1996) 927–971.

[10] L.S. Luo, Analytic solutions of linearized lattice Boltzmann equation for simple flow, J. Stat. Phys. 88 (1997) 913–926.
[11] X. He, Q. Zou, L.S. Luo, M. Dembo, Analytic solutions and analysis on no-slip boundary condition for the lattice Boltzmann BGK

model, J. Stat. Phys. 87 (1997) 115–136.
[12] X. He, L.S. Luo, M. Dembo, Some progress in lattice Boltzmann method, Part 1. Non-uniform mesh grids, J. Comput. Phys. 129

(1996) 357–363.
[13] X. He, G. Doolen, Lattice Boltzmann method on a curvilinear coordinate system: vortex shedding behind a circular cylinder, Phys.

Rev. E 56 (1997) 434–440.
[14] X. He, G. Doolen, Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder, J. Comput. Phys.

134 (1997) 306–315.
[15] O. Filippova, D. Hänel, Grid refinement for lattice-BGK models, J. Comput. Phys. 147 (1998) 219–228.
[16] R. Mei, L.S. Luo, W. Shyy, An accurate curved boundary treatment in the lattice Boltzmann method, J. Comput. Phys. 155 (1999)

307–330.
[17] R. Mei, W. Shyy, L.S. Luo, Lattice Boltzmann method for 3D flows with curved boundary, J. Comput. Phys. 161 (2000) 680–699.
[18] R. Mei, D. Yu, W. Shyy, L.S. Luo, Force evaluation in the lattice Boltzmann method involving curved geometry, Phys. Rev. E 65

(2002) 041203.
[19] M. Bouzidi, M. Firdaouss, P. Lallemand, Momentum transfer of a Boltzmann-lattice fluid with boundaries, Phys. Fluids 13 (11)

(2001) 3452–3459.
[20] P. Lallemand, L.S. Luo, Lattice Boltzmann method for moving boundaries, J. Comput. Phys. 184 (2003) 406–421.
[21] D. Yu, R. Mei, W. Shyy, A unified boundary treatment in lattice Boltzmann method, AIAA 2003-0953, New York, 2003.
[22] Z.G. Feng, E.E. Michaelides, The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems, J.

Comput. Phys. 195 (2004) 602–628.
[23] Y. Peng, C. Shu, Y.T. Chew, X.D. Niu, X.Y. Lu, Application of multi-block approach in the immersed boundary-lattice Boltzmann

method for viscous fluid flows, J. Comput. Phys. 218 (2006) 460–478.
[24] Y.H. Qian, D. d’Humieres, P. Lallemand, Lattice BGK models for Navier–Stokes equation, Europhys. Lett. 17 (6) (1992) 479–484.
[25] Y.H. Qian, S.A. Orszag, Lattice BGK models for the Navier–Stokes equation: non-linear deviation in compressible regimes,

Europhys. Lett. 21 (1993) 255–259.
[26] C. Pan, L.S. Luo, C.T. Miller, An evaluation of the lattice Boltzmann schemes for porous medium flow simulation, Comput. Fluids

35 (2006) 898–909.
[27] P.-H. Kao, T.-F. Ren, R.-J. Yang, An investigation into fixed-bed microreactors using lattice Boltzmann method simulations, Int. J.

Heat Mass Transf. 50 (2007) 4243–4255.
[28] H. Li, X. Lu, H. Fang, Y. Qian, Force evaluations in lattice Boltzmann simulations with moving boundaries in two dimensions, Phys.

Rev. E 70 (2004) 026701.


	An investigation into curved and moving boundary treatments in the lattice Boltzmann method
	Introduction
	Review of lattice Boltzmann method
	Boundary treatments at solid curved surfaces
	Filippova and H auml nel (FH) model for curved boundary treatment
	Bouzidi and Yu interpolation-based models for curved boundary treatment
	An interpolation-free model for curved boundary treatment
	Application of curved boundary treatment to moving boundary problems

	Simulations
	Verification of curved boundary models using stationary square block
	Application of curved boundary treatment models to moving boundary problems

	Conclusion
	References


